Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
J Med Virol ; 95(4): e28719, 2023 04.
Article in English | MEDLINE | ID: covidwho-2299549

ABSTRACT

The innate immune response is the first line of host defense against viral infections, but its role in immunity against SARS-CoV-2 remains unclear. By using immunoprecipitation coupled with mass spectroscopy, we observed that the E3 ubiquitin ligase TRIM21 interacted with the SARS-CoV-2 nucleocapsid (N) protein and ubiquitinated it at Lys375 . Upon determining the topology of the TRIM21-mediated polyubiquitination chain on N protein, we then found that polyubiquitination led to tagging of the N protein for degradation by the host cell proteasome. Furthermore, TRIM21 also ubiquitinated the N proteins of SARS-CoV-2 variants of concern, including Alpha, Beta, Gamma, Delta, and Omicron together with SARS-CoV and MERS-CoV variants. Herein, we propose that ubiquitylation and degradation of the SARS-CoV-2 N protein inhibited SARS-CoV-2 viral particle assembly, by which it probably involved in preventing cytokine storm. Eventually, our study has fully revealed the association between the host innate immune system and SARS-CoV-2 N protein, which may aid in developing novel SARS-CoV-2 treatment strategies.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Immunity, Innate , SARS-CoV-2/metabolism , Ubiquitin/metabolism , Ubiquitination , Coronavirus Nucleocapsid Proteins/metabolism
2.
Cell Rep ; 42(1): 112014, 2023 01 31.
Article in English | MEDLINE | ID: covidwho-2177165

ABSTRACT

The SARS-CoV-2 Omicron variant of concern (VoC) and its sublineages contain 31-36 mutations in spike and escape neutralization by most therapeutic antibodies. In a pseudovirus neutralization assay, 66 of the nearly 400 candidate therapeutics in the Coronavirus Immunotherapeutic Consortium (CoVIC) panel neutralize Omicron and multiple Omicron sublineages. Among natural immunoglobulin Gs (IgGs), especially those in the receptor-binding domain (RBD)-2 epitope community, nearly all Omicron neutralizers recognize spike bivalently, with both antigen-binding fragments (Fabs) simultaneously engaging adjacent RBDs on the same spike. Most IgGs that do not neutralize Omicron bind either entirely monovalently or have some (22%-50%) monovalent occupancy. Cleavage of bivalent-binding IgGs to Fabs abolishes neutralization and binding affinity, with disproportionate loss of activity against Omicron pseudovirus and spike. These results suggest that VoC-resistant antibodies overcome mutagenic substitution via avidity. Hence, vaccine strategies targeting future SARS-CoV-2 variants should consider epitope display with spacing and organization identical to trimeric spike.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Ethnicity , Epitopes , Antibodies, Viral , Antibodies, Neutralizing , Neutralization Tests
3.
iScience ; 25(11): 105465, 2022 Nov 18.
Article in English | MEDLINE | ID: covidwho-2179833

ABSTRACT

To overcome the increased risk of SARS-CoV-2 reinfection or post-vaccination infection caused by the Omicron variant, Omicron-specific vaccines were considered a potential strategy. We reported the increased magnitude and breadth of antibody response against VOCs elicited by post-vaccination Delta and Omicron infection, compared to WT infection without vaccination. Then, in mouse models, three doses of Omicron-RBD immunization elicited comparable neutralizing antibody (NAb) titers with three doses of WT-RBD immunization, but the neutralizing activity was not cross-active. By contrast, a heterologous Omicron-RBD booster following two doses of WT-RBD immunization increased the NAb titers against Omicron by 9-folds than the homologous WT-RBD booster. Moreover, it retains neutralization against both WT and current VOCs. Results suggest that Omicron-specific subunit booster shows its advantages in the immune protection from both WT and current VOCs and that SARS-CoV-2 vaccines including two or more virus lineages might improve the NAb response.

5.
iScience ; 2022.
Article in English | EuropePMC | ID: covidwho-2092880

ABSTRACT

To overcome the increased risk of SARS-CoV-2 reinfection or post-vaccination infection caused by the Omicron variant, Omicron-specific vaccines were considered a potential strategy. We reported the increased magnitude and breadth of antibody response against VOCs elicited by post-vaccination Delta and Omicron infection, compared to WT infection without vaccination. Then, in mouse models, three doses of Omicron-RBD immunization elicited comparable neutralizing antibody (NAb) titers with three doses of WT-RBD immunization, but the neutralizing activity was not cross-active. By contrast, a heterologous Omicron-RBD booster following two doses of WT-RBD immunization increased the NAb titers against Omicron by 9 folds than the homologous WT-RBD booster. Moreover, it retains neutralization against both WT and current VOCs. Results suggest that Omicron-specific subunit booster shows its advantages in the immune protection from both WT and current VOCs and that SARS-CoV-2 vaccines including two or more virus lineages might improve the NAb response. Graphical

6.
Signal Transduct Target Ther ; 7(1): 301, 2022 08 30.
Article in English | MEDLINE | ID: covidwho-2016658

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still rapidly spreading worldwide. Many drugs and vaccines have been approved for clinical use show efficacy in the treatment and prevention of SARS-CoV-2 infections. However, the emergence of SARS-CoV-2 variants of concern (VOCs), such as Delta (B.1.617.2) and the recently emerged Omicron (B.1.1.529), has seriously challenged the application of current therapeutics. Therefore, there is still a pressing need for identification of new broad-spectrum antivirals. Here, we further characterized a human antibody (58G6), which we previously isolated from a patient, with a broadly authentic virus-neutralizing activity that inhibits the Delta and Omicron variants with half-maximal inhibitory concentrations (IC50) of 1.69 ng/ml and 54.31 ng/ml, respectively. 58G6 shows prophylactic and therapeutic efficacy in hamsters challenged with the Delta and Omicron variants through nasal delivery. Notably, a very low dosage (2 mg/kg daily) of 58G6 efficiently prevented Omicron variant replication in the lungs. These advantages may overcome the efficacy limitation of currently approved neutralizing antibodies that can be administered only by intravenous injection. In general, 58G6 is a promising prophylactic and therapeutic candidate against current circulating VOCs and even future emerging mutants. To the best of our knowledge, 58G6 is one of the most potent neutralizing antibodies against Omicron, with a broader spectrum than those approved for clinical use. 58G6 could be developed as a nebulized therapy, which would be more cost effective and user friendly and enhance the clinical outcome compared to that obtained with direct nasal delivery.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/pharmacology , Antiviral Agents/pharmacology , Cricetinae , Humans
7.
J Nanobiotechnology ; 20(1): 399, 2022 Sep 05.
Article in English | MEDLINE | ID: covidwho-2009411

ABSTRACT

BACKGROUND: Effective therapeutics and vaccines for coronavirus disease 2019 (COVID-19) are currently lacking because of the mutation and immune escape of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Based on the propagation characteristics of SARS-CoV-2, rapid and accurate detection of complete virions from clinical samples and the environment is critical for assessing infection risk and containing further COVID-19 outbreaks. However, currently applicable methods cannot achieve large-scale clinical application due to factors such as the high viral load, cumbersome virus isolation steps, demanding environmental conditions, and long experimental periods. In this study, we developed an immuno molecular detection method combining capture of the viral spike glycoprotein with monoclonal antibodies and nucleic acid amplification via quantitative reverse transcription PCR to rapidly and accurately detect complete virions. RESULTS: After constructing a novel pseudovirus, screening for specific antibodies, and optimizing the detection parameters, the assay achieved a limit of detection of 9 × 102 transduction units/mL of viral titer with high confidence (~ 95%) and excellent stability against human serum and common virus/pseudovirus. The coefficients of variation were 1.0 ~ 2.0% for intra-assay and inter-assay analyses, respectively. Compared with reverse transcription-PCR, the immunomolecular method more accurately quantified complete virions. SARS-CoV-2/pseudovirus was more stable on plastic and paper compared with aluminum and copper in the detection of SARS-CoV-2 pseudovirus under different conditions. Complete virions were detected up to 96 h after they were applied to these surfaces (except for copper), although the titer of the virions was greatly reduced. CONCLUSION: Convenient, inexpensive, and accurate complete virus detection can be applied to many fields, including monitoring the infectivity of convalescent and post-discharge patients and assessing high-risk environments (isolation rooms, operating rooms, patient living environments, and cold chain logistics). This method can also be used to detect intact virions, including Hepatitis B and C viruses, human immunodeficiency virus, influenza, and the partial pulmonary virus, which may further improve the accuracy of diagnoses and facilitate individualized and precise treatments.


Subject(s)
COVID-19 , Nucleic Acids , Aftercare , COVID-19/diagnosis , Copper , Humans , Patient Discharge , SARS-CoV-2 , Virion
8.
Eur J Clin Microbiol Infect Dis ; 41(9): 1155-1163, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1971739

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a global public health concern. The purpose of this study was to investigate the association between genetic variants and SARS-CoV-2 infection and the COVID-19 severity in Chinese population. A total of 256 individuals including 87 symptomatic patients (tested positive for SARS-CoV-2), 84 asymptomatic cases, and 85 close contacts of confirmed patients (tested negative for SARS-CoV-2) were recruited from February 2020 to May 2020. We carried out the whole exome genome sequencing between the individuals and conducted a genetic association study for SARS-CoV-2 infection and the COVID-19 severity. In total, we analyzed more than 100,000 single-nucleotide polymorphisms. The genome-wide association study suggested potential correlation between genetic variability in POLR2A, ANKRD27, MAN1A2, and ERAP1 genes and SARS-CoV-2 infection susceptibility. The most significant gene locus associated with SARS-CoV-2 infection was located in POLR2A (p = 5.71 × 10-6). Furthermore, genetic variants in PCNX2, CD200R1L, ZMAT3, PLCL2, NEIL3, and LINC00700 genes (p < 1 × 10-5) were closely associated with the COVID-19 severity in Chinese population. Our study confirmed that new genetic variant loci had significant association with SARS-CoV-2 infection and the COVID-19 severity in Chinese population, which provided new clues for the studies on the susceptibility of SARS-CoV-2 infection and the COVID-19 severity. These findings may give a better understanding on the molecular pathogenesis of COVID-19 and genetic basis of heterogeneous susceptibility, with potential impact on new therapeutic options.


Subject(s)
COVID-19 , Aminopeptidases , COVID-19/epidemiology , COVID-19/genetics , China/epidemiology , Genome-Wide Association Study , Humans , Intracellular Signaling Peptides and Proteins , Minor Histocompatibility Antigens , Polymorphism, Single Nucleotide , SARS-CoV-2/genetics
9.
Signal Transduct Target Ther ; 7(1): 261, 2022 08 01.
Article in English | MEDLINE | ID: covidwho-1967592

ABSTRACT

Apolipoprotein E (APOE) plays a pivotal role in lipid including cholesterol metabolism. The APOE ε4 (APOE4) allele is a major genetic risk factor for Alzheimer's and cardiovascular diseases. Although APOE has recently been associated with increased susceptibility to infections of several viruses, whether and how APOE and its isoforms affect SARS-CoV-2 infection remains unclear. Here, we show that serum concentrations of APOE correlate inversely with levels of cytokine/chemokine in 73 COVID-19 patients. Utilizing multiple protein interaction assays, we demonstrate that APOE3 and APOE4 interact with the SARS-CoV-2 receptor ACE2; and APOE/ACE2 interactions require zinc metallopeptidase domain of ACE2, a key docking site for SARS-CoV-2 Spike protein. In addition, immuno-imaging assays using confocal, super-resolution, and transmission electron microscopies reveal that both APOE3 and APOE4 reduce ACE2/Spike-mediated viral entry into cells. Interestingly, while having a comparable binding affinity to ACE2, APOE4 inhibits viral entry to a lesser extent compared to APOE3, which is likely due to APOE4's more compact structure and smaller spatial obstacle to compete against Spike binding to ACE2. Furthermore, APOE ε4 carriers clinically correlate with increased SARS-CoV-2 infection and elevated serum inflammatory factors in 142 COVID-19 patients assessed. Our study suggests a regulatory mechanism underlying SARS-CoV-2 infection through APOE interactions with ACE2, which may explain in part increased COVID-19 infection and disease severity in APOE ε4 carriers.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Apolipoprotein E3/metabolism , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Binding Sites , COVID-19/genetics , Humans , Inflammation/genetics , Protein Binding , Spike Glycoprotein, Coronavirus
10.
J Med Virol ; 94(12): 5691-5701, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1966059

ABSTRACT

Immune responses elicited by viral infection or vaccination play key roles in the viral elimination and the prevention of reinfection, as well as the protection of healthy persons. As one of the most widely used Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines, there have been increasing concerns about the necessity of additional doses of inactivated vaccines, due to the waning immune response several months after vaccination. To further optimize inactivated SARS-CoV-2 vaccines, we compared immune responses to SARS-CoV-2 elicited by natural infection and immunization with inactivated vaccines in the early phase. We observed the lower antibody levels against SARS-CoV-2 spike (S) and nucleocapsid (N) proteins in the early phase of postvaccination with a slow increase, compared to the acute phase of SARS-CoV-2 natural infection. Specifically, IgA antibodies have the most significant differences. Moreover, we further analyzed cytokine expression between these two groups. A wide variety of cytokines presented high expression in the infected individuals, while a few cytokines were elicited by inactivated vaccines. The differences in antibody responses and cytokine levels between natural SARS-CoV-2 infection and vaccination with the inactivated vaccines may provide implications for the optimization of inactivated SARS-CoV-2 vaccines and the additional application of serological tests.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Viral , Antibody Formation , COVID-19/prevention & control , COVID-19 Vaccines , Cytokines , Humans , Immunoglobulin A , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination , Vaccines, Inactivated
11.
Cell Rep ; 39(5): 110770, 2022 05 03.
Article in English | MEDLINE | ID: covidwho-1859379

ABSTRACT

The emergence of the SARS-CoV-2 Omicron variant is dominant in many countries worldwide. The high number of spike mutations is responsible for the broad immune evasion from existing vaccines and antibody drugs. To understand this, we first present the cryo-electron microscopy structure of ACE2-bound SARS-CoV-2 Omicron spike. Comparison to previous spike antibody structures explains how Omicron escapes these therapeutics. Secondly, we report structures of Omicron, Delta, and wild-type spikes bound to a patient-derived Fab antibody fragment (510A5), which provides direct evidence where antibody binding is greatly attenuated by the Omicron mutations, freeing spike to bind ACE2. Together with biochemical binding and 510A5 neutralization assays, our work establishes principles of binding required for neutralization and clearly illustrates how the mutations lead to antibody evasion yet retain strong ACE2 interactions. Structural information on spike with both bound and unbound antibodies collectively elucidates potential strategies for generation of therapeutic antibodies.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing , Antibodies, Viral , Cryoelectron Microscopy , Humans , Immunoglobulin Fab Fragments , Spike Glycoprotein, Coronavirus
12.
Kidney Int Rep ; 6(9): 2525, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1796885

ABSTRACT

[This corrects the article DOI: 10.1016/j.ekir.2020.07.010.][This corrects the article DOI: 10.1016/j.ekir.2021.07.022.].

13.
Kidney Int Rep ; 6(9): 2526-2531, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1796884

ABSTRACT

[This corrects the article DOI: 10.1016/j.ekir.2021.07.021.][This corrects the article DOI: 10.1016/j.ekir.2020.07.010.].

14.
Biosens Bioelectron ; 209: 114226, 2022 Aug 01.
Article in English | MEDLINE | ID: covidwho-1767929

ABSTRACT

Protein sensors based on allosteric enzymes responding to target binding with rapid changes in enzymatic activity are potential tools for homogeneous assays. However, a high signal-to-noise ratio (S/N) is difficult to achieve in their construction. A high S/N is critical to discriminate signals from the background, a phenomenon that might largely vary among serum samples from different individuals. Herein, based on the modularized luciferase NanoLuc, we designed a novel biosensor called NanoSwitch. This sensor allows direct detection of antibodies in 1 µl serum in 45 min without washing steps. In the detection of Flag and HA antibodies, NanoSwitches respond to antibodies with S/N ratios of 33-fold and 42-fold, respectively. Further, we constructed a NanoSwitch for detecting SARS-CoV-2-specific antibodies, which showed over 200-fold S/N in serum samples. High S/N was achieved by a new working model, combining the turn-off of the sensor with human serum albumin and turn-on with a specific antibody. Also, we constructed NanoSwitches for detecting antibodies against the core protein of hepatitis C virus (HCV) and gp41 of the human immunodeficiency virus (HIV). Interestingly, these sensors demonstrated a high S/N and good performance in the assays of clinical samples; this was partly attributed to the combination of off-and-on models. In summary, we provide a novel type of protein sensor and a working model that potentially guides new sensor design with better performance.


Subject(s)
Biosensing Techniques , COVID-19 , Antibodies, Viral , COVID-19/diagnosis , Humans , Luciferases , SARS-CoV-2
15.
mBio ; 13(2): e0009922, 2022 04 26.
Article in English | MEDLINE | ID: covidwho-1736029

ABSTRACT

Recently, highly transmissible severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants B.1.617.1 (Kappa), B.1.617.2 (Delta), and B.1.618 with mutations within the spike proteins were identified in India. The spike protein of Kappa contains the four mutations E154K, L452R, E484Q, and P681R, and Delta contains L452R, T478K, and P681R, while B.1.618 spike harbors mutations Δ145-146 and E484K. However, it remains unknown whether these variants have alterations in their entry efficiency, host tropism, and sensitivity to neutralizing antibodies as well as entry inhibitors. In this study, we found that Kappa, Delta, or B.1.618 spike uses human angiotensin-converting enzyme 2 (ACE2) with no or slightly increased efficiency, while it gains a significantly increased binding affinity with mouse, marmoset, and koala ACE2 orthologs, which exhibit limited binding with wild-type (WT) spike. Furthermore, the P681R mutation leads to enhanced spike cleavage, which could facilitate viral entry. In addition, Kappa, Delta, and B.1.618 exhibit a reduced sensitivity to neutralization by convalescent-phase sera due to the mutation E484Q, T478K, Δ145-146, or E484K, but remain sensitive to entry inhibitors such as ACE2-Ig decoy receptor. Collectively, our study revealed that enhanced human and mouse ACE2 receptor engagement, increased spike cleavage, and reduced sensitivity to neutralization antibodies of Kappa, Delta and B.1.618 may contribute to the rapid spread of these variants. Furthermore, our results also highlight that ACE2-Ig could be developed as a broad-spectrum antiviral strategy against SARS-CoV-2 variants. IMPORTANCE SARS-CoV-2, the causative agent of pandemic COVID-19, is rapidly evolving to be more transmissible and to exhibit evasive immune properties, compromising neutralization by antibodies from vaccinated individuals or convalescent-phase sera. Recently, SARS-CoV-2 variants B.1.617.1 (Kappa), B.1.617.2 (Delta), and B.1.618 with mutations within the spike proteins were identified in India. In this study, we examined cell entry efficiencies of Kappa, Delta, and B.1.618. In addition, the variants, especially the Delta variant, exhibited expanded capabilities to use mouse, marmoset, and koala ACE2 for entry. Convalescent sera from patients infected with nonvariants showed reduced neutralization titers among the Kappa, Delta, and B.1.618 variants. Furthermore, the variants remain sensitive to ACE2-Ig decoy receptor. Our study thus could facilitate understanding how variants have increased transmissibility and evasion of established immunity and also could highlight the use of an ACE2 decoy receptor as a broad-spectrum antiviral strategy against SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Animals , Antiviral Agents , COVID-19/therapy , Humans , Immune Evasion , Immunization, Passive , Mice , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization , COVID-19 Serotherapy
16.
Genes Dis ; 9(5): 1290-1300, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1616497

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The Spike protein that mediates coronavirus entry into host cells is a major target for COVID-19 vaccines and antibody therapeutics. However, multiple variants of SARS-CoV-2 have emerged, which may potentially compromise vaccine effectiveness. Using a pseudovirus-based assay, we evaluated SARS-CoV-2 cell entry mediated by the viral Spike B.1.617 and B.1.1.7 variants. We also compared the neutralization ability of monoclonal antibodies from convalescent sera and neutralizing antibodies (NAbs) elicited by CoronaVac (inactivated vaccine) and ZF2001 (RBD-subunit vaccine) against B.1.617 and B.1.1.7 variants. Our results showed that, compared to D614G and B.1.1.7 variants, B.1.617 shows enhanced viral entry and membrane fusion, as well as more resistant to antibody neutralization. These findings have important implications for understanding viral infectivity and for immunization policy against SARS-CoV-2 variants.

17.
Emerg Microbes Infect ; 11(1): 483-497, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1606402

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has set off a global pandemic. There is an urgent unmet need for safe, affordable, and effective therapeutics against COVID-19. In this regard, drug repurposing is considered as a promising approach. We assessed the compounds that affect the endosomal acidic environment by applying human angiotensin-converting enzyme 2 (hACE2)- expressing cells infected with a SARS-CoV-2 spike (S) protein-pseudotyped HIV reporter virus and identified that obatoclax resulted in the strongest inhibition of S protein-mediated virus entry. The potent antiviral activity of obatoclax at nanomolar concentrations was confirmed in different human lung and intestinal cells infected with the SARS-CoV-2 pseudotype system as well as clinical virus isolates. Furthermore, we uncovered that obatoclax executes a double-strike against SARS-CoV-2. It prevented SARS-CoV-2 entry by blocking endocytosis of virions through diminished endosomal acidification and the corresponding inhibition of the enzymatic activity of the endosomal cysteine protease cathepsin L. Additionally, obatoclax impaired the SARS-CoV-2 S-mediated membrane fusion by targeting the MCL-1 protein and reducing furin protease activity. In accordance with these overarching mechanisms, obatoclax blocked the virus entry mediated by different S proteins derived from several SARS-CoV-2 variants of concern such as, Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.2). Taken together, our results identified obatoclax as a novel effective antiviral compound that keeps SARS-CoV-2 at bay by blocking both endocytosis and membrane fusion. Our data suggested that obatoclax should be further explored as a clinical drug for the treatment of COVID-19.


Subject(s)
Cathepsins/metabolism , Furin/metabolism , Indoles/pharmacology , Pyrroles/pharmacology , SARS-CoV-2 , Virus Internalization/drug effects , COVID-19 , Humans , Hydrogen-Ion Concentration , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus
18.
PLoS Pathog ; 17(11): e1010053, 2021 11.
Article in English | MEDLINE | ID: covidwho-1506691

ABSTRACT

COVID-19 patients transmitted SARS-CoV-2 to minks in the Netherlands in April 2020. Subsequently, the mink-associated virus (miSARS-CoV-2) spilled back over into humans. Genetic sequences of the miSARS-CoV-2 identified a new genetic variant known as "Cluster 5" that contained mutations in the spike protein. However, the functional properties of these "Cluster 5" mutations have not been well established. In this study, we found that the Y453F mutation located in the RBD domain of miSARS-CoV-2 is an adaptive mutation that enhances binding to mink ACE2 and other orthologs of Mustela species without compromising, and even enhancing, its ability to utilize human ACE2 as a receptor for entry. Structural analysis suggested that despite the similarity in the overall binding mode of SARS-CoV-2 RBD to human and mink ACE2, Y34 of mink ACE2 was better suited to interact with a Phe rather than a Tyr at position 453 of the viral RBD due to less steric clash and tighter hydrophobic-driven interaction. Additionally, the Y453F spike exhibited resistance to convalescent serum, posing a risk for vaccine development. Thus, our study suggests that since the initial transmission from humans, SARS-CoV-2 evolved to adapt to the mink host, leading to widespread circulation among minks while still retaining its ability to efficiently utilize human ACE2 for entry, thus allowing for transmission of the miSARS-CoV-2 back into humans. These findings underscore the importance of active surveillance of SARS-CoV-2 evolution in Mustela species and other susceptible hosts in order to prevent future outbreaks.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/epidemiology , Host Adaptation , Mink/immunology , Mutation , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Adult , Aged , Angiotensin-Converting Enzyme 2/genetics , Animals , Binding Sites , COVID-19/immunology , COVID-19/therapy , COVID-19/transmission , COVID-19/virology , Female , Humans , Immunization, Passive/statistics & numerical data , Male , Middle Aged , Mink/virology , Molecular Dynamics Simulation , Netherlands/epidemiology , Protein Binding , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization , Young Adult , COVID-19 Serotherapy
19.
Nat Commun ; 12(1): 6304, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1500462

ABSTRACT

Accumulating mutations in the SARS-CoV-2 Spike (S) protein can increase the possibility of immune escape, challenging the present COVID-19 prophylaxis and clinical interventions. Here, 3 receptor binding domain (RBD) specific monoclonal antibodies (mAbs), 58G6, 510A5 and 13G9, with high neutralizing potency blocking authentic SARS-CoV-2 virus display remarkable efficacy against authentic B.1.351 virus. Surprisingly, structural analysis has revealed that 58G6 and 13G9 both recognize the steric region S470-495 on the RBD, overlapping the E484K mutation presented in B.1.351. Also, 58G6 directly binds to another region S450-458 in the RBD. Significantly, 58G6 and 510A5 both demonstrate prophylactic efficacy against authentic SARS-CoV-2 and B.1.351 viruses in the transgenic mice expressing human ACE2 (hACE2), protecting weight loss and reducing virus loads. Together, we have evidenced 2 potent neutralizing Abs with unique mechanism targeting authentic SARS-CoV-2 mutants, which can be promising candidates to fulfill the urgent needs for the prolonged COVID-19 pandemic.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/chemistry , Antibodies, Viral/administration & dosage , Antibodies, Viral/chemistry , Binding Sites , COVID-19/pathology , COVID-19/virology , Epitopes , Humans , Mice , Mice, Transgenic , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Viral Load/drug effects , Weight Loss/drug effects
20.
Cell Mol Immunol ; 19(2): 150-157, 2022 02.
Article in English | MEDLINE | ID: covidwho-1467097

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an ongoing pandemic that poses a great threat to human health worldwide. As the humoral immune response plays essential roles in disease occurrence and development, understanding the dynamics and characteristics of virus-specific humoral immunity in SARS-CoV-2-infected patients is of great importance for controlling this disease. In this review, we summarize the characteristics of the humoral immune response after SARS-CoV-2 infection and further emphasize the potential applications and therapeutic prospects of SARS-CoV-2-specific humoral immunity and the critical role of this immunity in vaccine development. Notably, serological antibody testing based on the humoral immune response can guide public health measures and control strategies; however, it is not recommended for population surveys in areas with very low prevalence. Existing evidence suggests that asymptomatic individuals have a weaker immune response to SARS-CoV-2 infection, whereas SARS-CoV-2-infected children have a more effective humoral immune response than adults. The correlations between antibody (especially neutralizing antibody) titers and protection against SARS-CoV-2 reinfection should be further examined. In addition, the emergence of cross-reactions among different coronavirus antigens in the development of screening technology and the risk of antibody-dependent enhancement related to SARS-CoV-2 vaccination should be given further attention.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , Immunity, Humoral , Pandemics/prevention & control , SARS-CoV-2/immunology , Vaccination/methods , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody-Dependent Enhancement/immunology , COVID-19/epidemiology , COVID-19/virology , Cross Reactions , Humans , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL